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Abstract

Given an approximate time-dependent distribution of midplane vertical displacement and three-dimensional

transverse shear and normal stresses in a platelike elastic body undergoing ¯exure ± the quantities delivered by the

Kirchho� (classical) theory ± we construct exact solutions of the equations of motion of linear three-dimensional

elasticity. This is accomplished by (1) solving an auxiliary spatially hyperbolic system of partial di�erential equations (in

which time enters only parametrically) and (2) choosing residual body and surface forces and initial conditions to insure

satisfaction of all three-dimensional ®eld equations, boundary, and initial conditions. The residual quantities which, in

general, are signi®cant only near the edges of the plate, serve as meaningful physical measures of the errors in classical

plate theory. The special di�culties posed by plates with sharp corners are mentioned, but are left for future treat-

ment. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Although re®nements and extensions of the Prager±Synge (1947) hypercircle method have been applied
successfully to assess the errors in the three-dimensional stress ®elds that one can infer from the Kirchho�
(classical) static theory of plates (see Ladev�eze, 1985, where relevant work may be found), little has been
done on how to estimate errors in dynamics. Such error assessments are important, because, as is well
known, dynamic phenomena can produce entirely new e�ects not seen in statics (resonant vibrations, stress
reversals due to re¯ections, wave ampli®cation due to special geometries).

Ladev�eze and Simmonds (1996) considered the similar but simpler problem of estimating errors in the
solutions of the equations of motion of the elementary (Euler±Bernoulli) theory of beams of narrow
rectangular cross-section as compared to solutions of the ``exact'' equations of elastodynamic plane stress
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theory. Also, Qian and Simmonds (1998) showed how to compute the pointwise errors made in three-
dimensional elastodynamic solutions inferred from solutions of the classical linear elastodynamic theory of
axisymmetric homogeneous isotropic plates. The idea, which we adopt here for homogeneous, elastically
isotropic plates of general shape subject to normal surface loads and ®xed to a rigid boundary, though
straightforward, requires careful attention to mathematical details. Nevertheless, it has a direct physical
appeal: one takes the approximate time-dependent three-dimensional stress and displacement ®elds to be
those inferred from Kirchho� theory and then asks, ``What residual external loads and initial conditions
must be added to the exact, three-dimensional equations of elasticity to make the approximate ®elds
exact?''. Next, we show, via an integral representation using a Green's function, that these residual
quantities may be computed explicitly in terms of solutions of the Kirchho� plate equations, although, in
practice, the order of magnitude estimates may su�ce. Finally, we show that our analytic results can be
simpli®ed considerably if we introduce asymptotic expansions in a small parameter representing the
thickness-to-diameter ratio of the plate. Obviously, our approach includes static problems, although no one
to our knowledge has applied it even to this special case.

In summary, given an initial/boundary-value problem on a plate-like domain in three-dimensional
Euclidean space, we solve exactly a ``neighboring'' problem. The increments so introduced in the data,
which are computable explicitly, then serve as a measure of the ``distance'' between the two problems. As
the data in a plate problem are rarely known exactly, the perturbed data may be su�ciently close to the
original data to be acceptable in practice. If not, our analysis will show where Kirchho� theory must be
re®ned. (Thus, we do not attempt to specify a precise norm to measure ``distance''. Rather, we present an
algorithm for computing changes in loads and initial conditions and leave it to engineering judgment as to
whether, in speci®c cases, these are tolerable.)

To concentrate on essentials, we consider a simply connected plate, clamped along a smooth boundary and
subject to initial and boundary conditions, external surface and body forces such that the plate is in a state of
pure bending. Moreover, in the associated two-dimensional Kirchho� plate equations, the initial conditions
are taken to be zero and the only given external force is a normal pressure that may vary in space and time.

The original contributions of the present article are (1) a technique for constructing exact, explicit three-
dimensional elastodynamic solutions for arbitrary plate-like bodies (excluding sharp corners), which starts
from two-dimensional solutions of Kirchho� plate theory; (2) the observation that the residual loads and
initial conditions introduced to solve the three-dimensional problem can serve as a measure of the accuracy
of the underlying approximate two-dimensional plate theory.

2. The governing equations

In an inertial right-handed Cartesian reference frame Oxyz with the standard set of ®xed, orthonormal
basis vectors {i, j, k}, particles in the interior of the undeformed plate have the representation

P : x � �r; z�; r � �x; y� 2 X; z 2 �ÿH ;H�; �2:1�
where X is the midplane of the plate and 2H is its thickness. We shall assume that the boundary of X is
smooth and has the parametric representation

oX : r � r̂�s� � x̂�s�i� ŷ�s�j; s 2 �0; L�; �2:2�
where s is the arc length.

Denoting the in-plane, transverse, and normal components of the symmetric stress tensor by rxx, rxy , ryy ,
sx, sy , and r, respectively, and the in-plane and normal components of the displacement vector by Ux, Uy ,
and W , respectively, we have, from the classical three-dimensional linear theory of isotropic elasticity
(Timoshenko and Goodier, 1970), the six displacement±stress relations
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G�Ux;z�W ;x � � sx; G�Uy ;z�W ;y � � sy ; EW ;z� rÿ m�rxx � ryy�; �2:3�

G�Ux;y �Uy ;x � � rxy ; EUx;x� rxx ÿ m�ryy � r�; EUy ;y � ryy ÿ m�rxx � r�; �2:4�
and the three equations of motion

sx;x� sy ;y � r;z� fz � qW ;tt ; �2:5�

rxx;x� rxy ;y � sx;z� fx � qUx;tt ; rxy ;x� ryy ;y � sy ;z� fy � qUy ;tt : �2:6�
Here, G is the shear modulus, m is Poisson's ratio, E � 2�1� m�G is Young's modulus, fx, fy , and fz are body
forces, q is the mass density, and a comma followed by a subscript denotes di�erentiation with respect to
the subscript.

Pure bending means that

sx; sy ;W
rxx; rxy ; ryy ;r;Ux;Uy

� �
are

even
odd

� �
functions of z: �2:7�

In view of Eq. (2.7), the boundary conditions on the faces of the plate may be expressed as

fr; sx; syg�r;�H ; t� � 1
2
f� p; qx; qyg�r; t�; r 2 X; 0 < t; �2:8�

while on the edge of the plate we have

fUx;Uy ;W g�r; z; t� � 0; r 2 oX; z 2 �ÿH ;H �; 0 < t: �2:9�
To complete the speci®cation of the three-dimensional problem, we have the initial conditions

fUx;Uy ;W ;Ux;t ;Uy ;t ;W ;t g�r; z; 0� � fU 0
x ;U

0
y ;W

0; _U 0
x ;

_U 0
y ;

_W 0g�r; z�; r 2 X; z 2 �ÿH ;H �; �2:10�
where U 0

x ;
_U 0

x , etc., are given functions.
For simplicity, we shall assume that in the original problem, the external surface shears, the body forces,

and the initial conditions vanish.
The associated Kirchho� plate equation, from whose solutions we shall built our exact three-dimen-

sional solutions, are from Timoshenko and Woinowsky-Krieger (1959),

ÿDDDw� p�r; t� � mw;tt ; r 2 X; 0 < t; �2:11�
where D � 2EH 3=3�1ÿ m2� is the bending sti�ness, w is the midplane vertical displacement, D is the two-
dimensional Laplacian, and m � 2Hq is the mass/area. The boundary conditions for the Kirchho� plate
equations are

fw;w;n g�r; t� � 0; r 2 oX; 0 < t; �2:12�
where w;n is the outward normal derivative at the boundary; the initial conditions are

fw;w;t g�r; 0� � 0; r 2 X: �2:13�
Our task is to choose the surface shears, body forces, and three-dimensional initial conditions ± the residual
loads and initial conditions, as we shall call them ± so that we may construct exact explicit solutions of the
resulting three-dimensional ®eld equations.

To simplify the notation, we set

f � f
E
; a � E

G
� 2�1� m�; c2 � m

1ÿ m
: �2:14�

We then use the three displacement±stress relations given by Eq. (2.4), re-written in the form

P. Ladev�eze et al. / International Journal of Solids and Structures 37 (2000) 7029±7042 7031



arxy � Ux;y �Uy ;x ;

�1ÿ m2�rxx � �Ux;x� mUy ;y � � m�1� m�r; �1ÿ m2�ryy � �Uy ;y � mUx;x � � m�1� m�r �2:15�

to eliminate rxy ; rxx; and ryy in favor of Ux;Uy ;W ; and r. Using Eq. (2.14) and substituting the above ex-
pressions into Eq. (2.3), we obtain

Ux;z�W ;x� asx; Uy ;z�W ;y � asy ;

m�Ux;x�Uy ;y � � �1ÿ m�W ;z� �1� m��1ÿ 2m�r: �2:16�
We now assume that the right-hand sides of Eq. (2.16) are given and satisfy the upper and lower face
boundary conditions (2.8). (Ultimately, sx; sy and r are to be expressed in terms of solutions of the
Kirchho� plate equations.) Thus, we are left with a hyperbolic system of partial di�erential equations for the
two unknowns U and W as functions of the two spatial variables x and y, with time t appearing only
parametrically. The solution of this system, subject to certain conditions on the midplane and edges of the
three-dimensional plate, is going to yield the desired exact three-dimensional elasticity solutions. Being
hyperbolic, the system is amenable to solution by certain (modi®ed) classical techniques, as we now show.

3. Reduction of the governing equations

First, we assume that the external surface shears may be expressed in terms of a residual load potential as

qx � /;x �r; t�; qy � /;y �r; t�; �3:1�
where

/�r; t� � 0; r 2 oX; 0 < t: �3:2�
(This assumption proves to place no limitation on our approach.) Next, we introduce the change of
variables

W � ~W � 1
2
a/; sx � ~sx � 1

2
/;x ; sy � ~sy � 1

2
/;y : �3:3�

Then, using Eqs. (2.14), (2.15), (3.1), and (3.2), we may re-write our ®eld Eqs. (2.5), (2.6), and (2.16) in the
forms

f z � q� ~W � 1
2
a/�;tt ÿ�~sx;x� ~sy ;y � ÿ r;zÿ1

2
D/; �3:4�

f x � qUx;tt ÿ~sx;zÿ1
2
�1ÿ m2�ÿ1�2Ux;xx��1ÿ m�Ux;yy ��1� m�Uy ;xy �2m�1� m�r;x �; �3:5�

f y � qUy ;tt ÿ~sy ;zÿ1
2
�1ÿ m2�ÿ1�2Uy ;yy ��1ÿ m�Uy ;xx��1� m�Ux;xy �2m�1� m�r;y �; �3:6�

Ux;z� ÿ ~W ;x�a~sx; Uy ;z� ÿ ~W ;y �a~sy ; �3:7�

m�Ux;x�Uy ;y � � �1ÿ m� ~W ;z� �1� m��1ÿ 2m�r: �3:8�
By Eqs. (3.2), (3.3), and (3.7), we may re-write our boundary conditions (2.9) as

f ~W ;x ; ~W ;y ; ~W g�r; z; t� � af~sx; ~sy ; 0g�m; z; t�; r 2 oX; z 2 �ÿH ;H �; 0 < t: �3:9�
The homogeneous initial conditions on the in-plane displacements remain unchanged while those on the
normal displacement become

f ~W ; ~W ;t g � ÿ1
2
af/;/;t g�r; 0�: �3:10�
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Note that the boundary conditions (2.8), which now take the form,

fr; ~sx; ~syg � 1
2
f�p; 0; 0g�r; t�; r 2 X; 0 < t; �3:11�

are to be satis®ed by the modi®ed ®elds ~sx; ~sy , and r.
To reduce our ®eld equations further, we assume that 0 < m < 1

2
and di�erentiate both sides of Eq. (3.8)

with respect to z (making obvious assumptions on smoothness, as we do throughout the article). We then
eliminate Ux;xz and Uy ;yz from the resulting equation by using the ®rst term in Eq. (3.7), di�erentiated with
respect to x, and the second term in Eq. (3.7), di�erentiated with respect to y. These manipulations yield the
non-homogeneous spatial wave equation

~W ;zzÿc2D ~W � 1� m
1ÿ m

� �
��1ÿ 2m�r;zÿ2v�~sx;x�~sy ;y �� � f �r; z; t�; r 2 X;

z 2 �ÿH ;H�; 0 < t; �3:12�
where the ``wave speed'' c in the z-direction is given by the third term in Eq. (2.14). Note that time enters
Eq. (3.12) only as a parameter and, therefore, will be suppressed henceforth as an argument except in
Appendix A.

If we now identify W �r; 0� with the vertical de¯ection w�r� of the Kirchho� plate theory, then, because W
is an even function of z (as is ~W ), our problem is reduced to the following: solve Eq. (3.12) on the open
domain X� �0, H�, subject to the ``initial'' conditions 1

~W �r; 0� � w�r� ÿ 1
2
a/�r� � v�r�; ~W ;z �r; 0� � 0; r 2 X �3:13�

and the boundary conditions (3.9). In general, such boundary conditions (which are equivalent to speci-
fying both ~W and its normal derivative ~W ;n) over-determine the solution of the two-dimensional wave
equation and, therefore, must satisfy a consistency condition ± a condition that will ultimately determine /
and hence the body forces from the right-hand sides of Eqs. (3.4)±(3.6). The residual initial conditions we
spoke of will be determined from Eq. (2.10).

4. Solution for ~W

We shall follow a standard procedure in linear partial di�erential equations and attempt to satisfy Eq.
(3.12) and the conditions (3.13) with the aid of a free-space Green's function G�x; x� (See, e.g. Copson,
1975). This will lead, after some mathematical maneuvers to work around singular behavior on charac-
teristic cones, to an integral representation for ~W . Satisfaction of the (two, over-speci®ed) boundary
conditions (3.13) leads, ®nally, to an integral equation for the unknown residual load potential /.

We require our Green's function to satisfy the (distributional) di�erential equation

G;zzÿc2DG � d�xÿ x�; x; x 2 X� �0;H� �4:1�
and the ``causal'' condition

G�xÿ x� � 0; z > z; �4:2�
where d is the delta distribution. The Green's function has the well-known form (Copson, 1975, p. 107),

2pcG�xÿ x� � �c2�zÿ z�2ÿ j rÿ r j2�ÿ1=2
; c�zÿ z� >j rÿ r j;

0; c�zÿ z� <j rÿ r j :
�

�4:3�

1 Remember, we are suppressing the argument t.
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Thus, G vanishes outside of and is singular on the boundary of the (open, solid, one-sheeted) characteristic
cone

C�x� � fx jc�zÿ z� > jrÿ rj; z 6 Hg: �4:4�
If we attempt to obtain an integral representation for ~W �x� in the standard way by using integration by

parts and the divergence theorem to remove derivatives on G and put them on ~W , we encounter divergent
integrals along the boundary of the characteristic cone. Such obstacles were overcome by Marcel Riesz who
introduced a fractional integral operator and performed analytic continuation on the order of the operator.
(A very readable exposition may be found in Copson (1975).) Fortunately, there is a much simpler way in
our problem: we work with the (slightly) shifted Green's function G�rÿ r; z� eÿ z�; e > 0, which is in®-
nitely di�erentiable on and in a neighborhood of C. Then, after suitable manipulations, we let e! 0. The
details are as follows.

First, to simplify the notation and to minimize minus signs, we make a change of variables and introduce
a parameter:

rÿ r � Hq; c�zÿ z� � Hf; q � jqj; f � cz=H : �4:5�
Further, as explained above, we shift the location of the delta in Eq. (4.1) to the point �r; z� e� and denote
cH times the corresponding Green's function and the characteristic cone by ~G�q; f� and C�f�; respectively.
Thus, in a local system of circular cylindrical coordinates (q, h, f), Eqs. (3.12) and (4.1) may be given the
respective forms

�q ~W ;f �;fÿ�q ~W ;q �;qÿ�qÿ1 ~W ;h �;h� �H=c�2qf �r� Hq; zÿ Hf=c�
� q ~f �q; h; f�; �4:6�

�q ~G;f �;fÿ�q ~G;q �;qÿ�qÿ1 ~G;h �h � d�q; f� e�=2p: �4:7�
We now multiply Eq. (4.6) by ~G, subtract ~W multiplied by Eq. (4.7), and integrate over the intersection

of the plate P and the (transformed) solid characteristic cone C�f�. Next, we apply the divergence theorem
in the coordinate system �q; h; f�. Then, along the generators of oC, the boundary of C, we set q �
f � r=

���
2
p

and note that, on these generators,
���
2
p

f ;r� f ;q�f ;f. Finally, we let q � q̂�h�, f � f represent the
boundary of the intersection of C with the midplane X of the plate, as in Fig. 1; if C and oX do not intersect,
then q̂ � f.

Let AB, CD, and DA, as in Fig. 1, denote the two (and possibly three) straight line segments which form
the boundary of the intersection of the ®rst quadrant of the qf-plane with C�f�. On DA (if it is not empty),
the boundary conditions (3.9) imply that

~W � 0 and ~W ;n� a~ss; �4:8�
where ~W ;n is the directional derivative of ~W along the outward normal to the edge and

~ss � ~sx�s; z�ŷ 0�s� ÿ ~sy�s; z�x̂0�s�: �4:9�

Noting the ``initial'' conditions (3.13), we have, altogetherZ 2p

0

�IAB � ICD � IDA�dh �
Z 2p

0

Z q̂�h�

0

q
Z f

q

~G�q; f� ~f �q; h; f�dfdqdh; �4:10�

where
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IAB � ÿ
Z q̂�h�

0

v� ~G;f �ABqdq; �4:11�

ICD � �1=
���
2
p
�
Z ��

2
p

q̂�h�

0

� ~W ~G;rÿ ~G ~W ;r �CDrdr; �4:12�

IDA � ÿa
����������������������������
q̂2�h� � q̂02�h�

q Z f

q̂�h�
� ~G~ss�DA df; �4:13�

and where the notation ���AB means that the quantity in parentheses is evaluated on AB.
We now consider each of these integrals as e! 0, assuming that ~W and its ®rst partial derivatives are

continuous on the closure of the region X� �ÿH ;H� which de®nes the interior of the undeformed plate.
First, on AB,

2pq ~G;f� ÿq��f� e�2 ÿ q2�ÿ3=2�f� e� � ÿ2p�f� e� ~G;q : �4:14�
Hence, substituting this expression into Eq. (4.11), integrating by parts, and noting that v � 0 on oX, we
have

Fig. 1. Geometry of the intersection of the characteristic cone C�f� with the edge and midplane of the plate.
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IAB � ÿ�12p��v�B ÿ �f� e�
Z q̂�h�

0

v;q � ~G�AB dq� 0 if q̂ < f;
�f� e��v ~G�A if q̂ � f;

�
�4:15�

where the notation ���A means that the quantity in parentheses is evaluated at the point A.
Next, on CD,

2p ~G � �
���
2
p

re� e2�ÿ1=2 �4:16�
so that

� ~W ~G;rÿ ~G ~W ;r �r �
���
2
p

e ~G ~W ;rÿ��r�
���
2
p

e� ~G ~W �;r : �4:17�
Thus, after integration by parts, we have

ICD � �1=2p�� ~W �C � e
Z ��

2
p

q̂�h�

0

� ~G ~W ;r �CD drÿ 0 if q̂ < f;
�f� e��v ~G�A if q̂ � f:

�
�4:18�

We now add Eqs. (4.15) and (4.18) and let e! 0. In Eq. (4.15), the limiting form of the integral is
improper if the upper limit is f, because �G�AB then has an inverse square root singularity. However, the
singularity is integrable. In Eq. (4.18), e� ~G�CD ! 0 uniformly as e! 0, whereas j� ~W ;r �CDj is bounded by
assumption. Thus, in the limit,

IAB � ICD � �1=2p��� ~W �C ÿ �v�B� ÿ f
Z q̂�h�

0

v;q �G�AB dq: �4:19�

As for IDA, note that

2p�G�DA � �f2 ÿ q̂2�h��ÿ1=2 �4:20�
so that, in the limit as e! 0; IDA has an (integrable) square root singularity at the lower limit of integration,
f � q̂�h�.

Finally, substituting Eq. (4.19) and the limiting form of IDA into Eq. (4.10) and solving for � ~W �C, we have

� ~W �C � �v�B �
Z 2p

0

f
Z q̂�h�

0

v;q �G�AB

"(
� q

Z f

q
G�q; f� ~f �q; h; f�df

#
dq

ÿ a
����������������������������
q̂2�h� � q̂02�h�

q Z f

q̂�h�
�G~ss�DA df

)
dh: �4:21�

5. Solution for the residual load potential /

To proceed further, we assume that the curvature j�s� at each point of oX satis®es

cHj < 1: �5:1�
This assumption eliminates sharp corners (which, as can be inferred from Figs. 1 and 2, would require a
special treatment that we do not attempt here) and simpli®es the geometry when the characteristic cone
intersects the edge of the plate.

It is well known that solutions of the linear three-dimensional plate equations exhibit a rapidly varying
edge (or boundary) layer of width O�H� superimposed on a slowly varying interior component. This
suggests that we attempt to determine / on two disjoint regions of the midplane, the edge zone

Xe � X \ C�x�; x 2 oX� �0;H �; �5:2�
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that is, the set of points in the midplane that lie in the domain of dependence of the edge, and the interior

Xi � Xÿ Xe: �5:3�
First, we choose /jXi

� 0 so that vjXi
� w. Furthermore, in the interior, q̂�h� � f: Thus, in the local

coordinate system (4.5), we obtain from Eq. (4.21), the explicit formula

~W �0; 0� � w�0� � 1

2p

Z 2p

0

f
Z f

0

w;q �q; h����������������
f

2 ÿ q2

q
264

8><>: � q
Z f

q

~f �q; h; f�df���������������
f2 ÿ q2

q
375dq

9>=>;dh: �5:4�

On Xe, we must choose / so that ~W vanishes on the edge of the plate. To do so, we now place the origin
B of our local circular cylindrical coordinates (q, h, f) on oX. Furthermore, we now describe the intersection
of the characteristic cone C�q� with the edge oX by specifying the two functions

h � p� h��q� and h � hÿ�q�; 0 6 q 6 f; �5:5�
as shown in Fig. 2, and change orders and variables of integration. Finally, we assume that in a neighbor-
hood of any point B 2 oX, we can express the dimensionless directed distance r from B along oX in the form

r � r��q� if r > 0;
ÿrÿ�q� if r < 0:

�
�5:6�

Thus, because v � 0 on oX, we obtain from Eq. (4.21) the following integral equation or consistency
condition for the residual load potential:

Fig. 2. Geometry of the intersection of the characteristic cone C�f� with the midplane of the plate when the cone's axis lies on the

plate's edge.
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Z f

0

w�q�dq���������������
f

2 ÿ q2

q � h�f�; 0 6 f 6 c; �5:7�

where

w�q� �
Z p�h��q�

hÿ�q�
v;q �q; h�dh; 0 6 q 6 f; �5:8�

h�f� � a
Z f

0

Z f

q

r0ÿ�q�~ss�ÿrÿ�q�; f� � r0��q�~ss�r��q�; f����������������
f2 ÿ q2

q
264

375dfdq

ÿ
Z f

0

Z f

q

1���������������
f2 ÿ q2

q Z p�h��q�

hÿ�q�
~f �q; h; f�dhdfdq; 0 6 f 6 c �5:9�

is a known function.
The left-hand side of Eq. (5.7) is a convolution whose solution, via Laplace transforms, is

w�q� � 2

p
d

dq

Z q

0

h�n�ndn���������������
q2 ÿ n2

q
264

375: �5:10�

But note that, because v vanishes on oX, the right-hand side of Eq. (5.8) can be written as

d

dq

Z p�h��q�

hÿ�q�
v�q; h�dh; 0 6 q 6 f �5:11�

and hence, to within an unknown constant which must be set to zero because v�0, h� � 0, we are left with
the following integral equation to solve:Z p�h��q�

hÿ�q�
v�q; h�dh � 2

p

Z q

0

h�n�dn���������������
q2 ÿ n2

q � g�q�; 0 6 q 6 f; �5:12�

where g is a known function (computable, but perhaps, only numerically).

6. The thin plate approximation

In general, the solution of Eq. (5.12) for v must be obtained numerically. However, if we assume that the
plate is thin in the sense that

e � H=L� 1; �6:1�
then we can make further progress analytically.

As mentioned earlier, approximate solutions in the three-dimensional theory of elastically isotropic
clamped plates exhibit boundary layers of O�H� along smooth edges. (The behavior near corners, which is
more complicated, awaits analysis.) Within such boundary layers, solutions vary rapidly with respect to
distance normal to the edge, but generally, more slowly in a direction parallel to the edge. To make our
basic integral Eq. (5.12) better re¯ect this behavior and with an eye toward an approximate perturbation
solution, we now introduce a system of dimensionless edge-zone geodesic coordinates �r, s� by setting
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s � s� Hr; �6:2�

r � r̂�s� Hr� � Hsn�s� Hr�; r 2 Xe; �6:3�
where s is the arc length along oX to B and n is a unit inward normal to oX. The assumption that cHj < 1 at
every point of oX insures that there is a 1:1 correspondence between the Cartesian and geodesic coordinates
of any point in Xe.

If r̂00�s� is continuous (as we shall henceforth assume), then Taylor's expansion with the remainder
implies that

r̂�s� Hr� � r� �Hr�t� 1
2
�Hr�2jn� o�H 2r2�; �6:4�

n�s� Hr� � nÿ �Hr�jt� o�Hr�; �6:5�
where an overbar denotes a quantity evaluated at r � 0. Thus, assuming r; s � O�1�, we have, from the ®rst
term in Eq. (4.5), and from Eqs. (6.3), and (6.4),

q�r; s� � rt� sn� e�1
2
rnÿ st�jLr� o�e� �6:6�

from which it follows that

q cos h � q � t � rÿ ejLrs� o�e�; �6:7�

q sin h � q � n � s� 1
2
ejLr2 � o�e�: �6:8�

Inverting these relations, we obtain

r � q cos h� ejLq2 sin h cos h� o�e�; �6:9�

s � q sin hÿ 1
2
ejLq2 cos2 h� o�e�: �6:10�

Finally, we note from Eqs. (5.6) and (6.6) that

r� � �q� o�e� �6:11�
and from Eq. (6.10) that

h� � 1
2
ejLq� o�e�: �6:12�

As mentioned earlier, we expect that our unknowns in the edge zone Xe will vary slowly with r, i.e., will
vary slowly in a direction parallel to oX. Thus, we assume that v (which we have set to w outside Xe) has the
form v � v̂�er; s�. We further assume that v̂ has the expansion

v̂�er; s� � v0�s� � erv1�s� � o�e�: �6:13�
By Eqs. (6.9) and (6.10), we can write Eq. (6.13) in the alternative form

v � ~v�q; h� � v0�q sin h� � e~v1�q; h� � o�e�; �6:14�
where

~v1 � �v1�q sin h� ÿ 1
2
jL�q cos h�v00�q sin h��q cos h: �6:15�

Substituting Eq. (6.14) along with Eq. (6.12) into (5.12) and recalling that v�er; 0� � 0, we haveZ p

0

v0�q sin h�dh� e
Z p

0

~v1�q; h�dh� o�e� � g�q�; �6:16�

which implies that
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Z p

0

v0�q sin h�dh � g�q� �6:17�

and by Eq. (6.15) that

v1�q sin h� � 1
2
jL�q cos h�rv00�q sin h�: �6:18�

To solve Eq. (6.17), let

g � q sin h: �6:19�
Then,Z q

0

v0�g�dg���������������
q2 ÿ g2

p � 1
2
g�q�: �6:20�

As this equation is of the same form as Eq. (5.7), its solution is of the form as Eq. (5.10). That is,

v0�g� �
1

p
d

dg

Z g

0

g�n�dn���������������
g2 ÿ n2

q
264

375: �6:21�

7. Calculation of the residual loads and initial conditions: an outline

Our original goal, to compute surface shears qx and qy , residual body forces fx, fy , fz, and initial con-
ditions such that the three-dimensional stress and displacement ®elds inferred from Kirchho� plate theory
are exact solutions of elastodynamics, has been reduced to quadrature which, in general, requires numerics.
(For the special case of the axisymmetric deformation of circular plates, analytic calculations are possible.
See Qian and Simmonds (1998) for an example in statics and see Ladev�eze and Simmonds (1996) for an
example in the dynamics of beams.) Thus, we shall merely outline the steps necessary to compute these
residual quantities. Note that all the computations are carried out with respect to some given point B on oX,
located by its arc length s. Also, note that all computations assume that a solution w of the Kirchho� plate
equations is on hand
1. Compute ~f from f , the right-hand side of Eq. (3.12), using Eqs. (A.1), (A.8), and (A.11) in Appendix A

which express the modi®ed transverse shear and normal stresses ~sx, ~sy , and r in terms of w.
2. Compute h�f� from Eq. (5.9). If we locate the origin of our Cartesian coordinate system at the point B on

oX so that i � t and j � n, then from Eqs. (4.9), (5.6), (6.4), and (6.11), and recalling that we are sup-
pressing the time variable, we have

r0ÿ�q�~ss�ÿrÿ�q�; f� � r0��q�~ss�r��q�; f� � ÿ~sy�s; fÿ Hf=c��1� o�1��: �7:1�
Thus, noting Eq. (6.12), we may write Eq. (5.9) in the form

h�f� � ÿ
Z f

0

Z f

q

a~sy�s; fÿ Hf=c� � R p
0

~f �q; h; f�dh���������������
f2 ÿ q2

q
264

375dfdq�1� o�1��; �7:2�

which, if we ignore the o�1� error term, may be an acceptable approximation for thin plates. (Note that if
r̂�s� has a continuous third derivative along oX, then O�1� terms become O�e� terms.)

3. Solve Eq. (5.12) ± mostly likely numerically ± or, for a thin plate, use Eq. (6.21) to compute to a ®rst
approximation v, and hence, / � �2=a��wÿ v�:
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4. Compute the residual surface shears qx and qy from Eq. (3.1).
5. Use Eq. (4.21) to compute W � ~W � 1

2
a/ anywhere in the plate ± Eq. (5.4) will do outside the edge zone.

6. Integrate the system Eqs. (3.7) and (3.8) to ®nd Ux and Uy .
7. Compute the right-hand sides of Eqs. (3.4)±(3.6) to ®nd the residual body forces f x, f y , and f z.
8. Use Eq. (2.10) to compute the residual initial conditions fU 0

x ; . . . ; _W g:

8. Closing remarks

The degree of non-vanishing of the residual surface shears, body forces, and initial conditions constitute
a collective measure of the accuracy of Kirchho� plate theory in any speci®c problem. Although tedious,
the computations involved are straightforward. Once implemented, we believe that they will prove to be a
practical tool for assessing the accuracy of dynamic solutions of the Kirchho� plate theory; time will tell.
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Appendix A. Three-dimensional ®elds implied by Kirchho� theory

Our reference three-dimensional elasticity problem, which Eq. (2.11) and its associated initial/boundary
conditions approximate, has no body forces, no surface shears, and homogeneous initial conditions. To
derive the corresponding classical plate equations, augmented by approximate three-dimensional ®elds for
the transverse shearing and normal stresses ± the augmented plate equations for short ± we introduce the
following scaled variables into Eqs. (3.4)±(3.8):

x � Ln; y � Lg; z � Hf; t � �L2=H�
���������
q=E

p
s;

~W � �p0L4=EH 3�m; �Ux;Uy� � �p0L3=EH 2��un; ug�; �A:1�

�~sx; ~sy� � �p0L=EH��Tn; Tg�; r � �p0=E�R;
where p0 is some nominal external pressure. (The variables f and s are di�erent from those used in the main
body of this article.) We then let e � H=L! 0. Recalling that f x � f y � f z � / � 0 in our reference
problem, we obtain, reversing the order of the equations,

m;f� 0; un;f� ÿm;n ; ug; f � ÿm;g ; �A:2�

�1ÿ m2�Tn;f�un;nn�1
2
�1ÿ m�un;gg�1

2
�1� m�ug;ng� 0; �A:3�

�1ÿ m2�Tg;f�ug;gg�1
2
�1ÿ m�ug;nn�1

2
�1� m�un;ng� 0; �A:4�

m;ssÿ�Tn;n�Tg;g � ÿ R;f� 0: �A:5�
Integrating these equations in order and remembering the parity conditions (2.7), we obtain from the

®rst term in Eq. (A.2)

m � ŵ�n; g; s� �A:6�
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and thence from the second and third terms in Eq. (A.2),

un � ÿfŵ;n �n; g; s�; ug � ÿfŵ;g �n; g; s�: �A:7�

Substituting these expressions into Eqs. (A.3) and (A.4), integrating to ®nd Tn and Tg, and imposing the face
conditions Tn�n; g;�1; s� � Tg�n; g;�1; s� � 0, we ®nd that

�1ÿ m�2Tn � 1
2
�f2 ÿ 1�Dŵ;n ; �1ÿ m�2Tg � 1

2
�f2 ÿ 1�Dŵ;g ; �A:8�

where D � o2=on2 � o2=og2:
Finally, integrating Eq. (A.5) from 0 to f, we have

�1ÿ m�2R � 1
2
�fÿ f3=3�DDŵ� �1ÿ m2�fŵ;ss : �A:9�

Application of the face boundary condition R�n; g;�1; s� � �1
2
�p=p0� yields

�2=3��1ÿ m2�ÿ1DDŵ� 2ŵ;ss� p=p0; �A:10�
a dimensionless form of the Kirchho� plate Eq. (2.11). Solving Eq. (A.10) for DDŵ and substituting the
result back into Eq. (A.9), we have

R � �1=4�f��3ÿ f2��p=p0� � 2�f2 ÿ 1�ŵ;ss �: �A:11�
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